Drawing Genealogies

Andrej Mrvar
Faculty of Social Sciences

Vladimir Batagelj
Faculty of Mathematics and Physics
University of Ljubljana, Slovenia
1. Sources of Genealogies

- Research data

- Genealogies of families and/or territorial units, e.g. Mormons genealogy:

 http://www.familytreemaker.com/0000116.html
 http://www.genforum.com/mormon/

- Special Genealogies

 - Students and their PHD thesis advisors:
 Theoretical Computer Science Genealogy
 http://sigact.acm.org/genealogy/

 - gods (antique)

There exist many programs for data entry (GIM, Brother’s Keeper, Family Tree Maker,...), but only few analyses can be done using that programs. We use Pajek for analyses and visualization of genealogies.
2. GEDCOM Format

0 HEAD
1 SOUR BROSKEEP
2 VERS 5.2 WINDOWS
1 DATE 19 APR 1996
1 CHAR IBMPC
1 FILE F:\BK5\PRES\PRES.GED
...
0 @I1@ INDI
1 NAME William Jefferson /CLINTON/
1 SEX M
1 OCCU US President No. 42
1 BIRT
2 DATE 19 AUG 1946
2 PLAC Hope, Hempstead Co., AR
1 REFN Clinton-1
1 NOTE Born as William Jefferson Blythe IV.
2 CONT Last name was changed to Clinton.
2 CONT on 12 June 1962.
1 FAMS @F1@
1 FAMC @F2@
0 @F1@ FAM
1 HUSB @I1@
1 WIFE @I2@
1 CHIL @I66@
1 MARR
2 DATE 11 OCT 1975
0 @F2@ FAM
1 HUSB @I3@
1 WIFE @I4@
1 CHIL @I1@
1 MARR
2 DATE 3 SEP 1943
2 PLAC Texarkana, Miller Co., AR
0 TRLR
3. Ore-Graph
4. p-graph – D. R. White

- son & daughter-in-law
- son-in-law & daughter
- brother & sister-in-law
- ME & wife
- sister
- father & stepmother
- father & mother
- grandfather-f & grandmother-f
- grandfather-m & grandmother-m

Pajek
5. Genealogy of Bill Clinton
6. Sparse networks

Regular genealogy – every person has at most two parents.
Genealogies are sparse networks.
For directed part of regular Ore genealogy:

\[|A| = \sum_{v \in V} d_{in}(v) \leq 2|V| \]

\(A \) – set of directed lines, \(V \) – set of vertices, \(d_{in}(v) \) – input degree of vertex \(v \), \(d_{in}(v) \leq 2 \). Most of the persons are married only once, some are not married. For undirected part of Ore genealogy

\[|E| \leq \frac{1}{2}|V| \]

\(E \) – set of undirected lines. So

\[|L| = |A| + |E| \leq \frac{5}{2}|V| \]
P-graphs are almost trees – deviations from trees are caused by marriages among relatives. $|V_p|$ – number of vertices of *p-graph*, n_{mult} – number of multiple marriages

$$|V_p| \approx (|V| - 2|E| + n_{mult}) + |E| = |V| - |E| + n_{mult}$$

$|V| - 2|E| + n_{mult}$ – approximation of number of non-married persons, $|E|$ – approximation of number of couples.

$$|V_p| \geq |V| - |E|$$

$$|A_p| = \sum_{v \in V_p} d_{out}(v) \leq 2|V_p|$$

$d_{out}(v)$ – output degree of vertex v.

Advantages of p-graphs:

- Less vertices and lines in p-graphs;
- p-graphs are directed, acyclic;
- p-graphs are more suitable for analyses.
7. Drawing genealogies

Standard automatic layout algorithms (spring embedders) can be used, but generations (time) cannot be easily seen in obtained pictures. Our goal is:
Layout of a genealogy in layers, such that there exist no connections among vertices within layers.

- Determine layers / generations – y coordinates.
 - delete all tree subgraphs;
 - determine all first and last vertices;
 - determine all longest paths among first and last vertices;
 - determine the levels of vertices along the longest paths;
 - normalize the levels;
 - extend levels to the entire genealogy.
• Determine positions of vertices in layers.
 – put vertices at random positions in their layers;
 – for each vertex set its x-coordinate as the average of x coordinates of all its neighbours; repeat this until the coordinates stabilize;
 – displace vertices that are too close to a selected minimum distance.

• Optimize the total length of lines using relocation algorithm.

It is easy to generalize the algorithm for drawing genealogies in space (3D) – layers are planes on different heights – z coordinate.
8. Complete genealogy
9. Non-tree part
10. Longest paths
11. Genealogy drawn in layers
12. x coordinates averaged
13. Optimized layers
14. Complete genealogy – final layout
15. Analyses of genealogies

- Searching for the shortest kinship paths among persons.
- Determining all predecessors and successors of a selected person.
- Extracting neighbourhood of a selected person.
- Searching for interesting patterns in a genealogy – marriages among relatives, children having many parents, persons married several times…
- Statistics: average number of children, maximum number of children,…
16. Polititians of Quebec

http://www.cam.org/~beaur/gen/politiciens.html

• 173 records about individuals;
• 86 families and 1 individual
• one bicomponent having 26 vertices
17. Polititians – 5 cycle

Prs (Bastien selon biog.)/SIMARD/ & Jose’phine/LAVOIE/

Se’bastien/SIMARD/ & Anne/SIMARD/

Martin/LAVOIE/ & Madeleine/BLUTEAU/

Pierre/BLUTEAU/ & Agathe/SIMARD/

Dominique/SIMARD/ & Marie-Josephte/BOUCHARD/
18. TCS Genealogy

The Genealogy of Theoretical Computer Science is available as a text file on Internet.
http://sigact.acm.org/genealogy/
The following fields are available:

- the student’s name,
- the name of the student’s thesis adviser,
- an acronym for the university granting the doctoral degree, and
- the year the degree was granted.

From the data a network can be constructed.

- 1882 vertices and 1740 directed lines;
- 168 weakly connected components, one large (1025 vertices);
19. Longest Shortest Path

J.J. Thomson
O.W. Richardson 1904
K.T. Compton 1912
O.S. Duffendack 1922
D.C. Duncan 1924
Lloyd Devore
Norman Scott 1950
Harvey Garner 1958
Michael Harrison 1963
Kimberly King 1980
Eric Allender 1985
Martin Strauss 1995

? von_Littrov

Nikolai Dmitrievich Brashman
Pafnuty Lvovich Chebyshev 1849
Andrei Andreevich Markov 1884
Georgy Fedoseevich Voronoi 1897
Waclaw Sierpinski 1906
Stefan Mazurkiewicz 1913
Karol Borsuk 1931
Samuel Eilenberg 1936
Daniel M. Kan 1955
Jerrold W. Grossman 1974
20. All Predecessors of Harary

H.A. Newton

E.H. Moore 1885

Oswald Veblen 1903

Alonzo Church 1927

Alfred Foster 1930

Frank Harary 1948
21. All Successors of Harary

- L.W. Beineke 1965
- Curtis Cook 1970
- Patrick Wong 1978
- Peter J. Slater 1973
- Dana Grinstead 1989
- Frances Van_Scoy 1976
- Sandra Mitchell 1977
- Thomas Wimer 1987
- Chandra Narayanan 1989
- Eleanor Hare 1989
- Gayla Domke
- Aniket Majumdar

- Steve Hedetniemi 1966
- Paul Stockmeyer 1971
- Niall Graham 1989
22. Direct successors of Ullman

- Mihalis Yannakakis 1978
- Allen van Gelder 1987
- Howard Trickey 1985
- Alberto Torres 1994
- Jim Storer
- Howard Siegel 1977
- Alan Siegel 1983
- Ravi Sethi 1973
- Edward Sciore 1979
- Yatin Saraiya 1991
- Yehoshua Sagiv 1979
- Fred Sadri 1981
- Kenneth Ross 1991
- Thane Plambeck 1991
- Geoff Phipps 1992
- Jeffrey F. Naughton 1987
- Inderpal Mumick 1991
- Kate Morris 1991
- Alberto Mendelzon 1980
- Harry Mairson 1985
- David Maier 1979
- George Lueker 1976
- Gabi Kuper 1985
- Hank Korth 1982
- Kevin Karplus 1983
- Anna Karlin 1987
- Mark Kaplan 1979
- John Kam 1976
- Hakan Jakobsson 1993
- Greg Hunter 1977
- Ned Horvath 1975
- Peter Honeyman 1980
- Peter Hochschild 1986
- Dan Hirschberg 1975
- Matthew Hecht 1974
- Udai Gupta 1977
- Ashish Gupta 1994
- Deepak Goyal 1977
- Amelia Fong 1977
- Evan Cohn 1989
- Nahed El Djabri 1975
- Marcia Derr 1993
- Surajit Chaudhuri 1991
- Alex Birman 1970
- Alan Demers 1975
23. Shortest path from Harary to Ullman
24. Index of connectedness

\(n \) – number of vertices,
\(m \) – number of lines,
\(k \) – number of weakly connected components,
\(M \) – number of maximal vertices (vertices having output degree 0, \(M \geq 1 \)).

If \(G \) is a forest (consists of trees), then
\(m = n - k \), or \(k + m - n = 0 \).

Genealogy is regular if everyone has at most 2 parents.
In regular genealogy \(m \leq 2(n - M) = 2n - 2M \). Thus:

\[
0 \leq k + m - n \leq k + n - 2M
\]

or

\[
0 \leq \frac{k + m - n}{k + n - 2M} \leq 1
\]

Index of connectedness:

\[
P = \frac{k + m - n}{k + n - 2M}
\]

If we take a connected genealogy (selected weakly connected component) we get

\[
P = \frac{m - n + 1}{n - 2M + 1}
\]
For a trivial graph (having only one vertex) we define $P = 0$.

P has some interesting properties:

- $0 \leq P \leq 1$
- If G is a forest/tree, then $P = 0$ (no connectedness).
- For cycle $h = \frac{m}{2} = \frac{n}{2}$, $P = \frac{1}{2h-1}$ (the higher depth the weaker connectedness). For cycle of depth 3 (6 vertices) $P = \frac{1}{5}$.
- There exist genealogies having $P = 1$ (the highest connectedness). Figure shows such situations.
 - marriage between brother and sister ($n = 2, m = 2, k = 1, M = 1$),
 - two brothers married to two sisters from other family ($n = 4, m = 4, k = 1, M = 2$),
 - more complicated situation ($n = 9, m = 12, k = 1, M = 3$).
25. Genealogies having $P = 1$