
 The Great Math Adventure

                                                                                                     247

Chapter 9. The Great Math Adventure

“For some reason, when I’m doing my arithmetic 
homework, it seems more like a pain in the neck than a 
math adventure.”

True enough!  
But think about this for a moment…  
What part of your life does not involve 
mathematics…some form of counting 
or measurement?  
What about time…the counting and 
measurement of seconds and hours?  Or 
distance…the measurement of space in 
inches and feet…or centimeters and 
meters?  What about music…measured 
in frequencies?  
Think about Logo and the computer for 
a moment.  Everything you do on the 
computer is translated into electrical 
signals that are counted as zeros and 
ones.

Everything we have been doing so far in our Great 
Logo Adventure has been part of turtle geometry, right?  
I hate to tell you this, but that’s mathematics.

Come on…let’s take a look.
________________________________________________

Logo Arithmetic
Remember back in the first Rabbit Trail where you 

took a Turtle Walk.  You used the multiplication symbol 
then…

FD 10 * 5



The Great Math Adventure

248                                                                                                           

What would happen if that line said…

FD 10 + 5  or

FD 10 - 5  or

FD 10 / 5

Try these commands using variables…

MAKE “A 50
MAKE “B 100
MAKE “C :A + :B

FD :A + :B  or FD 100 + 50

FD :C / :A * 10

This one’s a bit more interesting.

FD 150 / 50 * 10 

That’s FD 150 divided by 50 = 3.  3 * 10 = 30 or FD 30.

FD :C / (:A * 3)

Does this command do the same thing?  Why?  Or why 
not?

When Logo looks at a command that uses arithmetic, 
it does the arithmetic in the standard mathematical 
order…multiplication and division followed by addition 
and subtraction.



 The Great Math Adventure

                                                                                                     249

So…when Logo reads that line, it says FD 150.  This 
is divided by 50 * 3 or 150.  So we have FD 150 / 150 or FD 
1.   Looks like the parentheses change things. 

 
Parentheses are among the Logo delimiters that can 

be used to change the order of operations.

“Delimiters…that’s a funny word!”

It may seem a bit strange.  But when you think about 
it, that’s just what they do.  Delimiters define the limits of 
an operation.  Take a look…

The commands listed below use arithmetic signs to tell 
the turtle to go FD 200.

FD 100 + 1000 / 10
FD 10 * (5 + 15)
FD (20 - 10) * (18 + 2)

Write down some other commands that will take the 
turtle FD 200.  Make sure you use parentheses in your 
examples.  Then test them out.

FD _____  _____  _____  _____  _____  _____

FD _____  _____  _____  _____  _____  _____

FD _____  _____  _____  _____  _____  _____
________________________________________________



The Great Math Adventure

250                                                                                                           

Mathematical 
Operations

There’s lots of other ways you can use arithmetic with 
Logo.  Here are the operations included with MSW Logo.

SUM DIFFERENCE MINUS
PRODUCT QUOTIENT REMAINDER
INT ROUND SQRT
POWER EXP LOG10
LN SIN RADSIN
COS RADCOS ARCTAN
RADARCTAN

Some of these are a bit advanced.  But some are very 
useful for all users.

FD SUM 50 50  

What do you think that means?  You’re right…FD 100.  
Forward the sum of 50 and 50 or 50 + 50.  How about…

FD DIFFERENCE 300 200 

Forward the difference between 300 and 200 or 
300 - 200.

FD PRODUCT 10 10

Forward the product of 10 times 10 or 10 * 10.

FD QUOTIENT 1000 10

Forward the quotient of 1000 divided by 10 or 
1000 / 10.



 The Great Math Adventure

                                                                                                     251

FD REMAINDER 1000 300

Forward the remainder of 1000 divided by 300.  How 
much is that?

FD INT (121.8 - 21.1)

Forward the integer of 121.8 - 21.1.  That equals 100.7.  
But, since the command is FD INTeger, or whole number, 
the decimal is dropped.

FD ROUND (121.8 - 21.5)

Forward 121.8 - 21.5 rounded off.  The answer is 100.3, 
which rounds to 100.

All these examples would be much simpler if they just 
said FD 100.  After all the arithmetic is done, they each tell 
Ernestine, the turtle, to go FD 100.

So what?
Well, what if you want to add or multiply a bunch of 

variables?

FD SUM (PRODUCT :A :X)(QUOTIENT :B :Y)

REPEAT (PRODUCT :A :B) [FD SUM :C :D RT 90]

You’ll see some examples of this type of thing later on.
________________________________________________



The Great Math Adventure

252                                                                                                           

The Tangram Procedures
First let’s take a look at the procedures to draw the 

Tangram Puzzle pieces you saw earlier.  

TO TRIANGLE.RT :SIDE            
FD :SIDE RT 135
FD :SIDE / SQRT 2 RT 90
FD :SIDE / SQRT 2 RT 135
END

TO TRIANGLE.LT  :SIDE
FD :SIDE LT 135
FD :SIDE / SQRT 2 LT 90
FD :SIDE / SQRT 2 LT 135
END

TO SQUARE.LT  :SIDE
MAKE “SIDE1 :SIDE / ( 2 * SQRT 2 )
REPEAT 4 [ FD :SIDE1 LT 90 ]
END

TO SQUARE.RT  :SIDE
MAKE “SIDE1 :SIDE / ( 2 * SQRT 2 )
REPEAT 4 [ FD :SIDE1 RT 90 ]
END

TO MED.TRI.RT  :SIDE
FD 2 * ( :SIDE / ( 2 * SQRT 2 ) ) RT 135
FD :SIDE / 2 RT 90
FD :SIDE / 2 RT 135
END



 The Great Math Adventure

                                                                                                     253

TO MED.TRI.LT  :SIDE
FD 2 * ( :SIDE / ( 2 * SQRT 2 ) ) LT 135
FD :SIDE / 2 LT 90
FD :SIDE / 2 LT 135
END

TO SMALL.TRI.RT  :SIDE
FD :SIDE / 2 RT 135
FD ( :SIDE / SQRT 2 ) / 2 RT 90
FD ( :SIDE / SQRT 2 ) / 2 RT 135
END

TO SMALL.TRI.LT  :SIDE
FD :SIDE / 2 LT 135
FD ( :SIDE / SQRT 2 ) / 2 LT 90
FD ( :SIDE / SQRT 2 ) / 2 LT 135
END

TO PARGRAM.LT  :SIDE
REPEAT 2 [ FD :SIDE / ( 2 * SQRT 2 ) LT 45 ~

FD :SIDE / 2 LT 135 ]
END

TO PARGRAM.RT  :SIDE
REPEAT 2 [ FD :SIDE / ( 2 * SQRT 2 ) RT 45 ~

FD :SIDE / 2 RT 135]
END



The Great Math Adventure

254                                                                                                           

To give you an idea of what you can do with tangram 
shapes, try this procedure.

TO TANGRAM  :SIDE
SETH 90 TRIANGLE.LT :SIDE 
FD :SIDE SETH 0
TRIANGLE.LT :SIDE 
FD :SIDE SETH 270
SMALL.TRI.LT :SIDE 
FD :SIDE / 2 SETH 225 
MED.TRI.RT :SIDE
SQUARE.LT :SIDE FD :SIDE1
PARGRAM.LT :SIDE
END

 
This procedure uses the different shape procedures to 

make one big shape.  Which one?  

You'll have to run the procedure to see.  

Remember, when you run the TANGRAM procedure, 
you have to type a value for :SIDE…

TANGRAM 200
________________________________________________

What’s a 
Parallelogram

“Logy, there’s something strange here?  You’ve got a 
rectangle that looks like it’s falling over.”



 The Great Math Adventure

                                                                                                     255

“You’re right, you know.  I never thought of a 
parallelogram like that,” said Logy.

“Para-who?”

“That’s another shape, a parallelogram.  You might 
call that the granddaddy of a square,” Logy answered.

“I don’t get it? What do you mean, granddaddy?”
“Take a look at this procedure.  It’s called PARGRAM 

for short.”

TO PARGRAM  :SIDE
REPEAT 2 [ FD :SIDE RT 45 FD :SIDE / 2 RT 135]
END

“What would happen if I changed the angles from RT 
45 and RT 135 to RT 90?”

“Hey, that would be a rectangle,” said Morf, jumping 
up and down excitedly.

“So, you can say that a rectangle is like the ’child’ of 
a parallelogram.

“Now look at the sides.  You’ve got two that are the 
length of :SIDE and two that are the length of :SIDE 
divided by 2.  What would happen if I took away the 
’divided by 2?”

“Well, let’s see.  You’d have two sets of sides that all 
use the same variable.  That means they’d all be the same.”

“And if all the angles are RT 90, what’s that?”



The Great Math Adventure

256                                                                                                           

“Hey, that’s a square!”

“OK, then.  Is it fair to say that a square is the child of 
a rectangle?"

“Seems that way.”

“Right!  So now we can add a new rule.”

A square has four equal sides and four equal angles.

A rectangle has two sets of equal sides and four equal 
angles.

A parallelogram has two sets of equal sides and two 
sets of equal angles.

____________________________________________________________________

Fun With 
Tangrams

Enough of this stuff.  Let’s have some more fun with 
tangrams?  

Put two small triangles together.  What shape do you 
get?  Can you make a square from the two small triangles?  
How about a larger triangle?  A parallelogram?

Put the parallelogram and two small triangles 
together.  What shape is that?  Can you make a square?  
What about a trapezoid?

“A what?”

“A Trap-e-zoid!  That’s another shape, Morf.  It’s like 
a parallelogram but it only has one set of parallel sides 
instead of two.”



 The Great Math Adventure

                                                                                                     257

“That‘s no trap-e-whatever.  That’s a picture of the 
pup tent we use out in the back yard!”

“Get serious, Morf.   Can you make a triangle using 
five pieces of the puzzle?

You'll find lots of puzzle books that have tangrams in 
them.  But you don't really need those books, do you?  I’ll 
bet you can think up all sorts of shapes on your own.
________________________________________________

Making Crazy 
Shapes

Why not have the computer think up some shapes for 
you?  

These might come out a bit crazy.  But who cares?  
That's the fun of having the turtle do things for you.  
CRAZY.SHAPES is included in the TANGRAM.LGO 
procedure.

TO CRAZY.SHAPES  :SIDE
SHAPES :SIDE
MOVE :SIDE
CRAZY.SHAPES :SIDE
END
TO SHAPES :SIDE          
MAKE “SHAPE INT RANDOM 10
IF :SHAPE = 0 [TRIANGLE.RT :SIDE]



The Great Math Adventure

258                                                                                                           

IF :SHAPE = 1 [TRIANGLE.LT :SIDE]
IF :SHAPE = 2 [MED.TRI.RT :SIDE]
IF :SHAPE = 3 [MED.TRI.LT :SIDE]
IF :SHAPE = 4 [SMALL.TRI.RT :SIDE]
IF :SHAPE = 5 [SMALL.TRI.LT :SIDE]
IF :SHAPE = 6 [SQUARE.RT :SIDE]
IF :SHAPE = 7 [SQUARE.LT :SIDE]
IF :SHAPE = 8 [PARGRAM.RT :SIDE]
IF :SHAPE = 9 [PARGRAM.LT :SIDE]     
END

TO MOVE :SIDE
MAKE “MOVE INT RANDOM 5     
IF :MOVE = 0 [SETH HEADING + 45]
IF :MOVE = 1 [SETH HEADING + 90]          
IF :MOVE = 2 [FD :SIDE]
IF :MOVE = 3 [FD :SIDE / 2]
IF :MOVE = 4 [FD ( :SIDE / SQRT 2 ) / 2]
END
________________________________________________

Squares and 
Square Roots

Look back at the TRIANGLE.RT procedure.  Got any 
idea what the SQRT 2 means?

That number is used to figure out how long the two 
short sides of the triangle are.  The left side is the longest 
side, right?  And we know that we have two equal sides 
connected by an angle of 90 turtle turns, or 90 degrees.

A long time ago, some mathematician figured out that 
when you know the long side of a triangle that has two equal 
sides and a right angle, then the short sides equal…

<Long side> / SQRT 2



 The Great Math Adventure

                                                                                                     259

There’s lots of rules like this for triangles and other 
shapes.  We’ve already figured out a bunch of them.

“But what does SQRT 2 mean?”

Actually, it stands for the square root of 2.  That sounds 
a lot worse than it really is.  It doesn’t have anything to do 
with the square shape.  It’s part of an arithmetic problem 
that asks what number, multiplied by itself, gives you the 
answer of 2.

What’s SQRT 100?  SQRT 9?  SQRT 16?

Think about it for a minute.  What number multiplied 
by itself equals 100?

10 * 10 = 100

What number multiplied by itself equals 9?
3 * 3 = 9

What number multiplied by itself equals 16?
4 * 4 = 16.  

Now let’s turn the square root around.  Square roots 
are like saying, “Here’s the answer.  Tell me what the 
question is…here’s 16, tell me how I got that?”

So let’s look at the question…4 multiplied by itself 
equals what?  In the list of Logo arithmetic operations, 
there is a POWER command.  

FD POWER 4 2

That’s like saying forward 4 to the power of 2, or 4-
squared, or 4 times 4.



The Great Math Adventure

260                                                                                                           

FD POWER 10 3

This is like saying forward 10-cubed or 10 * 10 * 10 or 
10 to the power of 3.  The 2 and the 3 are called “exponents.”  

“What about that thing called RANDOM?”

“Wait a bit.  There’s a really great example of that 
coming up.”
________________________________________________

Counting 
Numbers and 
Stuff

COUNT is another very useful Logo command.  It 
outputs the number of elements in its input.  That input 
can be a word or a list.

SHOW COUNT “LOGO
4

SHOW COUNT [LOGY AND MORF]
3

Here’s a line from a procedure we talk about in chapter 
14.  There’s a lot in this example.  But you’re only interested 
in that first line…the one with COUNT in it.  Let’s see if 
we could use that line to help make some sense out of 
COUNT.

REPEAT ( ( COUNT :NUMS2 ) - 1 ) ~
[MAKE “NUMS1 BF :NUMS1~
IF (FIRST :NUMS1) = FIRST :NUMS~
[MAKE “CARRY FIRST BF :NUMS]]

You have a variable named :NUMS2.  So let’s make 
:NUMS2 equal to a list of numbers.
MAKE “NUMS2 (LIST 22 11 30 567 982)



 The Great Math Adventure

                                                                                                     261

SHOW :NUMS2
[22 11 30 567 982]

SHOW COUNT :NUMS2
5

REPEAT ( ( COUNT :NUMS2 ) - 1 ) [FD 100 RT 90]

What would this command draw?  You should know 
that…you learned about this shape back in chapter 2.
________________________________________________

Items, 
Members, and 
Things

There are some other neat things you can do with 
words and lists.  In the example above, you used the 
COUNT of the variable :NUMS2 to create a square.  You 
can also select an item from a word or list and use that, too.

Here’s an example.  I bet you can guess what this is 
going to look like.  It also tells you what ITEM does in a 
Logo procedure.

REPEAT ITEM 3 :NUMS2 [SQUARE RT 12]

TO SQUARE
REPEAT ( ( COUNT :NUMS2 ) - 1 ) [FD 100 RT 90]
END

What do you think ITEM 3 :NUMS2 is?  You know 
that :NUMS2 is a list…[22 11 30 567 982].  So what is ITEM 
3 :NUMS2?

Another Gold Star if you said 30.



The Great Math Adventure

262                                                                                                           

ITEM outputs the third element of the variable 
:NUMS2.  It doesn’t matter whether the variable is a word 
or a list.

SHOW ITEM 2 “CAT
A

SHOW ITEM 2 7861236
8

Get the idea?

In the :NUMS2 example, you knew what NUMBER 
you were looking for…the third element, 30.  But what if 
you didn’t know?

Logo lets you ask.  Take a look.

TO CHECK :X
IFELSE MEMBERP :X :NUMS2~

[REPEAT ITEM 3 :NUMS2~
[SQUARE RT 12]][SQUARE]

END

TO SQUARE
REPEAT ( ( COUNT :NUMS2 ) - 1 ) [FD 100 RT 90]
END

MAKE “NUMS2 (LIST 22 11 30 567 982)

In the CHECK procedure, Logo asks if :X is a member 
of the variable :NUMS2.  If it is, it runs the line…

[REPEAT ITEM 3 :NUMS2 [SQUARE RT 12]] 



 The Great Math Adventure

                                                                                                     263

If not, it just runs the SQUARE procedure.

Logo picks up these instructions from the IFELSE 
command.  It’s like saying if a condition is true, then do 
this… or else do this.

There are a number of other questions you can ask 
Logo.

EQUALP…Are two words or lists equal or identical?
For example…
IF EQUALP :X (ITEM 3 :NUMS2) [REPEAT …

EMPTYP…Is a word or list empty (“ ) or ([ ])?
For example…
IFELSE EMPTYP :NUMS2 [STOP] [REPEAT …

If :NUMS2 is an empty list STOP, else run the
REPEAT line.

NUMBERP…Is an object a number?
For example…
IF NUMBERP (ITEM 3 :NUMS2) [REPEAT…

If ITEM 3 :NUMS2 is a number, then continue with 
the REPEAT line.  Otherwise skip it and go on to the next 
line.

WORDP
LISTP

These are like NUMBERP only these commands ask 
if the object is a word or a list.
_______________________________________________



The Great Math Adventure

264                                                                                                           

Logical Operations
There are three other primitives we need to look at 

before we leave Logo arithmetic…AND, OR, NOT.

AND AND tests to see if all the conditions following the 
command are true.

MAKE “X 210
MAKE “Y 724
IF AND :X > 200 :Y < 800 [FD 100]

The conditions are true so the turtle moves forward 100.

Where you have more than two conditions, they and 
the command AND must be enclosed in parentheses.

MAKE “Z 555
IF (AND :X > 200 :Y < 800 :Z >500) [FD 100]

The conditions are true so the turtle moves forward 100.

OR Where AND tests if all conditions are true, OR tests to 
see if any of the conditions are true.  If you have more than 
two conditions to test, use parentheses as shown below.

IF OR :X > 200 :Z >1000 [FD 100]
IF (OR :X > 200 :Y < 800 :Z >1000) [FD 100]

Because at least one of the conditions is true, the turtle 
moves forward 100.

NOT If the conditions are false, NOT outputs True.  In other 
words…

IF NOT :Z > 1000 [FD 100]



 The Great Math Adventure

                                                                                                     265

Since Z is not greater than 1000, the turtle moves forward 
100.
________________________________________________

Math Challenges
Math Challenges may sound a bit like homework, but 

these problems are fun…and a bit of a challenge to see what 
you’ve learned so far.

This is a Mandala.  People in India believe this is a 
symbol of the endless universe.

The procedures to create this drawing are on the next 
page.  Take some time to figure out how they work.  They’re 
an interesting exercise in turtle geometry.



The Great Math Adventure

266                                                                                                           

TO MANDALA :RADIUS :CENTER
CIRC
SQUARE
IF :RADIUS < 10 [STOP]
MANDALA :RADIUS :CENTER
END

TO SQUARE 
SETH 225 FD :RADIUS SETH 0
MAKE "SIDE SQRT (2 * (:RADIUS * :RADIUS))
PD REPEAT 4 [FD :SIDE RT 90]
MAKE "RADIUS :SIDE / 2
END

TO CIRC 
PU SETPOS :CENTER
SETX XCOR - :RADIUS
PD CIRCLER :RADIUS
PU SETPOS :CENTER
END

TO CIRCLER :RADIUS
LOCAL "STEP
MAKE "STEP 2 * :RADIUS * 3.1416 / 36
REPEAT 36 [RT 5 FD :STEP RT 5]
END

OK…now that you’ve got the Mandala procedure all 
figured out, try the same thing using triangles instead of 
squares.
________________________________________________



 The Great Math Adventure

                                                                                                     267

Here’s another one…

Draw a triangle on the computer…any type of triangle 
will do.

Now draw a circle around that triangle so that the edge 
of the circle touches the three points of the triangle.

This is going to get a bit complicated.  Just 
remember...the whole idea behind Logo is to break a 
problem down into its simplest parts.  Start with what you 
know.  Determine what you don’t know.  Then go find it.

What do you know?

You know that the three points of the triangle are going 
to be on the edge…the circumference…of the circle.  If you 
can find a point that is the same distance from each of those 
points, then you have the center of the circle, right?

To make things easier to understand, let’s label the 
points on the circle.  We’ll call them A, B, and C.

We have to find point D…a point inside the triangle 
that is the same distance from A as it is from B and C.



The Great Math Adventure

268                                                                                                           

If point D is the same distance from A, B, and C, then 
point D must be the center of the circle and the three lines, 
AD, BD, and CD are each a radius of the circle we are 
supposed to draw.

Now…how can we prove that.

Draw the line EF so that it is perpendicular to the 
middle of line AB.

Perpendicular means that the line EF is at right angles to 
line AB.

What can you learn from this drawing now?

B

A
  C

 D

B

A
  C

 D
E

  F



 The Great Math Adventure

                                                                                                     269

You have two triangles…ADE and BDE…that share 
one side and have two short sides that are equal.  Therefore, 
the sides AD and BD must be equal.

OK…if we can find the point on line EF that makes 
these two lines equal to line CD, we have found the middle 
of the circle we want to draw.

Let’s do it.
________________________________________________

The Random 
Triangle

The first step is to create a random triangle… 
something like we have already drawn.

TO RANDOM.TRI
MAKE “POINTA POS
FD 100 RT 120 - RANDOM 30
MAKE “POINTB POS
MAKE “DIST 250 - RANDOM 100 FD :DIST
MAKE “POINTC POS  HOME
END

This procedure starts from HOME…POINT A with 
coordinates 0,0.  The turtle goes FD 100 and turns right a 
random angle…somewhere between 120 and 90.

This is POINTB…coordinates 100,0.
The turtle then goes FD between 150 and 250 and sets 

POINTC.  Then the turtle goes Home.
The next step is to draw the perpendicular line. 

TO RT.ANGLE
SETPOS :POINTA
FD 100 / 2 RT 90
MAKE “POINTE POS
FD 200 PU HOME PD
END



The Great Math Adventure

270                                                                                                           

Now we have a drawing something like this, but without 
the dotted lines.

What do we need to know now to complete our circle?  
We need to find the point D on line EF that is the same 
distance from B as it is from C.  We already know that AD 
and BD are going to be equal…and that each is going to be 
a radius of our circle.  So if we can make one equal to line 
DC, the other is automatically equal to DC.

The first thing we need for that is a distance procedure.

TO DIST :X1 :Y1 :X2 :Y2
OP DIST1 :X1 - :X2 :Y1 - :Y2
END

TO DIST1 :DX :DY
OP INT SQRT (:DX * :DX) + (:DY * :DY)
END

The DIST procedure measures the distance between 
two sets of coordinates.  MSW Logo measures that 
difference very precisely.  So to keep things simple and easy 
to compare, the output is an integer…a whole number.  (It’s 
a lot easier to compare whole numbers than it is to compare 
long decimals.)

B

A
  C

 D
E

  F



 The Great Math Adventure

                                                                                                     271

Now let’s put the DISTance procedure to work.  We’ll 
use it to calculate two distances…the distance between B 
and D…and the distance between C and D.  When these 
are the same, we’ll draw our circle.

TO CHECK.DIST
MAKE “BD DIST FIRST :POINTB LAST :POINTB

 FIRST :POINTD LAST :POINTD
MAKE “CD DIST INT FIRST :POINTC 

INT LAST :POINTC FIRST :POINTD 
LAST :POINTD

SHOW :BD SHOW :CD
TEST :BD = :CD
IFTRUE [HT CIRCLE :POINTD :BD]
IFFALSE [FD 1 MAKE "POINTD POS

 CHECK.DIST]
END

Here’s more new commands…FIRST and LAST.  You 
already know that :POINTB is a list of two coordinates.  
So FIRST :POINTB must be the first coordinate.  And if 
that’s true, then LAST :POINTB must be the last element 
in the list or the y-coordinate.  You’ll learn more about 
characters, numbers, words, lists, FIRST, LAST, and other 
good stuff in chapter 11.

Now let’s run through the CHECK.DIST procedure.  
The first two lines calculate the distances BD and CD.  So 
that you can see how these distances change, the distances 
are printed in the Command Box.

Then Logo tests the two numbers.  If :BD = :CD is 
true…they are equal…Logo draws a circle with :POINTD 
as the center and a radius of :BD.  If the two distances are 
not equal, the turtle moves FD 1 and checks the distances 
again.



The Great Math Adventure

272                                                                                                           

TO CIRCLE :CENTER :RADIUS
LOCAL "AMT
MAKE "AMT :RADIUS * PI / 180
PU SETPOS :CENTER
SETX XCOR - :RADIUS SETH 0 PD
REPEAT 360 [FD :AMT RT 1]
PU SETPOS :CENTER PD
END

TO PI
OP 3.14159
END

To put the whole thing together, here’s a 
place to start.

TO START
RANDOM.TRI
SETPOS :POINTA
FD 50 RT 90 
MAKE "POINTD POS
CHECK.DIST
END

Take your time with this procedure.  Come back to it 
when you’re ready.  This is a good stepping stone to some 
of the other procedures you’ll see in the rest of this book.
________________________________________________



 The Great Math Adventure

                                                                                                     273

Numbers and Number Systems
I know what numbers are.  But what's a number 

system?

There's a big, big difference between numbers and 
number systems.  Numbers make up the arithmetic tables 
you memorize in school...2 + 2 = 4, 4 + 4 = 8, 8 + 8 = 16, and 
so on.  Number systems, on the other hand, let you move 
far beyond the arithmetic tables to where mathematics 
becomes a language all its own.

Look at it this way. 
There are 26 letters in the English language.  These are 

used to make words and sentences.  But words alone don't 
make a language.  You have to have a way to string those 
words together so they make sense to the person you're 
trying to talk to.  

 Letters and words aren't worth much unless you know 
what they mean and how they fit together.  More 
importantly, these letters and words have to mean the same 
thing to the person or people you're talking to.  If they mean 
one thing to you and something else to other people, that 
gets pretty confusing. 

When using numbers, we use the 10 digits from zero 
to 9…0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.  Just like letters are 
combined to make words, digits are combined to make 
numbers.  But the numbers don't mean anything unless 
you know how and why they fit together.  

What does 1, 487, 653 mean? This is where our number 
system comes in -- the decimal number system.  Decimal 
means that it is based on the number 10…or as the 
mathematicians say, it is base 10.  In the decimal number 
system, we learn to use tens, hundreds, thousands, ten 
thousands, and so on.  So we read that number as one 
million, four hundred eight-seven thousand, six hundred 
fifty-three.
________________________________________________



The Great Math Adventure

274                                                                                                           

Bits and Bytes Ever hear of a byte?  Sure you have.  You’ve see the 
abbreviations KB and MB a lot, I’m sure.  They stand for 
Kilo-Byte or one thousand bytes, and Mega-Byte or one 
Million Bytes.  Computer memory is organized in bytes.

A byte is 8 bits.  So what’s a bit?
A bit is one piece of memory, either a zero or a one.  

Either the power to the memory unit is On for one, or Off 
for zero.

These 0’s and 1’s are called “machine language.”  It’s 
the language computers use to communicate.   Take a look...

1 + 1 = 10

To the computer, this addition problem is correct.  Its 
number system only uses the two digits, 0 and 1.

When you add nine plus one, you have to go from the 
one’s to the ten’s column, right?  The reason is that there 
is no single character in the decimal number system to 
represent ten.  So you write a zero and add a one.

10 * 1 = 10
10 * 10 = 100
10 * 100 = 1,000
10 * 1,000 = 10,000

What does this tell you about 
 10?
This same idea applies to the binary system.  You only 

have a zero and a one.  There is no two.  
So when you multiply the binary numbers…

10 * 1 = 10  two * one = two.
10 * 10 = 100 two * two = four.
10 * 100 = 1000 two * four = sixteen.
10 * 1,000 = 10000 two * sixteen = thirty-two.



 The Great Math Adventure

                                                                                                     275

Converting 
Numbers

Yes, this is all very confusing.  So here’s a procedure 
that converts numbers from one number system to another.  
It’s called CONVERT.LGO.  To run it, type something 
like…

SHOW CONVERT 12 10 2

In other words, convert 12 from base 10 to base 2.  
What do you get?

TO CONVERT :N :FRBASE :TOBASE
OP DEC.TO.ANYBASE ~

ANYBASE.TO.DEC :N :FRBASE 1 :TOBASE
END

TO ANYBASE.TO.DEC :N :BASE :POWER
IF EMPTYP :N [OP 0]
OP ( :POWER * C.TO.N LAST :N ) + ~
 ANYBASE.TO.DEC BL :N :BASE ~

:POWER * :BASE
END

TO C.TO.N :N
IF NUMBERP :N [OP :N]
OP (ASCII :N) - 55
END
TO DEC.TO.ANYBASE :N :BASE
IF :N < :BASE [OP N.TO.C :N]
OP WORD DEC.TO.ANYBASE ~

INT QUOTIENT :N :BASE :BASE N.TO.C ~
REMAINDER :N :BASE

END



The Great Math Adventure

276                                                                                                           

TO DIVISORP :A :B
OP 0 = REMAINDER :B :A
END

TO N.TO.C :N
IF :N < 10 [OP :N]
OP CHAR 55 + :N
END

Two sets of procedures were tacked on to the end…two 
convert numbers from base 10 to base 16 and two convert 
numbers from base 10 to binary numbers (base 2) and 
back.

TO HEXTODEC :N
OP CONVERT :N 16 10
END

TO DECTOHEX :N
OP CONVERT :N 10 16
END

TO BINTODEC :N
OP CONVERT :N 2 10
END

TO DECTOBIN :N
OP CONVERT :N 10 2
END



 The Great Math Adventure

                                                                                                     277

Two others that might be useful are…

TO OCTTODEC :N
OP CONVERT :N 8 10
END

TO DECTOOCT :N
OP CONVERT :N 10 8
END

Why add octal numbers?  Because computers use 
binary, octal, and hexadecimal numbers.

Remember…a “bit” of memory is a tiny circuit that  
is OFF or ON, representing zero or one. 

Early desktop computers used 8-bit circuitry.  Eight 
bits equals one byte.  Even though today’s computer use 
32-bit technology, we measure memory and storage 
Kilobytes and Megabytes.

Octal numbers are Base 8, using the digits 0 to 7.  The 
digits 8 and 9 don’t exist.  So you have this situation…

7 + 1 = 10

Hexadecimal numbers are even more confusing.  They 
are Base 16.  Since we can only write ten digits, we add 
letters for ten to 15.  So you have…

9 + 1 = A  or ten.
A + 1 = B or eleven.
B + 4 = F or fifteen.
9 + 7 = 10 or sixteen.
10 + B = 15 or twenty-one.



The Great Math Adventure

278                                                                                                           

Computer 
Words

It would impossible to talk to a computer if its memory 
was just a jumble of on and off circuits.  So we organize 
the circuits into 16-bit “words.”  

00000000 00000001
00000000 00000001 +
00000000 00000010

00000000 00001111 = 15
00000000 11111111 = 255
11111111 11111111 = 65,535

Imagine what it would be like if you had to program 
in machine language using only zeros and ones?

Think for a minute!  The computer doesn’t think.  But 
if certain combinations of circuits are on, the computer 
does certain things.

SO-O-O…it seems that the computer must use some 
kind of code to translate the on and off circuits into binary 
numbers…then into instructions.

Each microprocessor…the integrated circuit that 
controls the computer…uses a special set of instructions to 
translate 0’s and 1’s into actions on the screen.  Computer 
languages such as Logo translate your commands into 
instructions that the instruction set of the computer can 
understand.

Mrtle, the robot, has a whole book on how this works.  
So we’ll keep this explanation short.  Just remember that 
it all has to do with special codes.

I don’t know about you…but this seems like a pretty 
good example of numbers being used as a language.
________________________________________________



 The Great Math Adventure

                                                                                                     279

More Math 
Adventures

COOKIE.LGO is  a simple game that adds some fun 
to mathematics.  It’s a great test to see who can make the 
most money selling cookies.  

The full procedure was installed when you installed 
MSW Logo.  Only a few of the subprocedures are listed 
here.  You’ll need to look at the whole thing to understand 
what’s going on.

Right now, let’s just focus on that strange thing in the 
Cost procedures…

OUTPUT 1.E-2 * (19 + RANDOM 7)

What’s that?

TO COST.OF.BOX 
PR2
MAKE “BOXSIZE ((5 * (1 + RANDOM 5)) + 10)
MAKE “BOXCOST (:BOXSIZE * :COST)
(PR [THE COST OF A BOX OF] :BOXSIZE :COOKIE 
[COOKIES IS $] :BOXCOST)
PR []
END

TO COSTA 
OUTPUT 1.E-2 * (19 + RANDOM 7)
END

TO COSTB 
OUTPUT 1.E-2 * (12 + RANDOM 8)
END

TO COSTC 
OUTPUT 1.E-2 * (9 + RANDOM 7)
END



The Great Math Adventure

280                                                                                                           

TO GAME 
CLEARTEXT
(PR [In one hour you sell] :AMOUNT)
(PR :COOKIE [cookies.])
NEXT
(PR [The] :COOKIE [ cookies cost you $] (:AMOUNT * 
:COST))
NEXT
(PR [Your gross sales were $] (:SALE.PRICE * 
:AMOUNT))
PR []
PR [This is how much money you took in.]
NEXT
SETCURSOR [0 17]
(PR [Your net profit for this turn was $] ~

((:SALE.PRICE - :COST) * :AMOUNT))
PR2
MAKE "PROFIT (:PROFIT + ((:SALE.PRICE - ~
 :COST) * :AMOUNT))
(PR [Your profit for the game is $] :PROFIT)
NEXT
END

Engineering 
Notation

Engineering notation is strange.  But it’s not all that 
complicated.  It’s really pretty easy.

Time to experiment.

Trying playing 
around with some 
engineering 
numbers.

SHOW 1.E + 2 * 9



 The Great Math Adventure

                                                                                                     281

SHOW 1.E - 5 * 9

SHOW 1.E + 14 * 128

What kind of answer is that…1.28e+16?

If you play around with engineering notation, you’ll 
discover how it works.  Try adding lots of numbers to 1.E.  
Subtract a bunch also.  What happens?

You’ll find it’s shorthand for writing very big or very 
small numbers.  And soon you’ll be able to read them just 
like you read other numbers.

1.28e+16 is 128 with 14 zeros…sixteen places to the 
right of the decimal point.

What’s SHOW 1.E-14 * 128?

Mathematics doesn’t have to be dull, meaningless 
stuff.  It can be fun.  It can even get exciting!

There’s lots more about math adventures coming 
up…Logo adventures, too!
________________________________________________



The Great Math Adventure

282                                                                                                           


