

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 2/18

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 3/18

Glavni pokrovitelji

Fakulteta za matematiko in fiziko

UNIVERZA V LJUBLJANI

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 4/18

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 5/18

Pokrovitelji

���������	
����
������	���	

���� ����	
� �

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 6/18

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 7/18

NAVODILA
Prijava: Prijavite se lahko le na en ra�unalnik. �e bodo med tekmovanjem z njim slu�ajno težave, javite
vodstvu tekmovanja. V primeru, da boste hkrati prijavljeni na dveh ra�unalnikih, bo ekipa
diskvalificirana.

Uporabniško ime je sestavljeno iz besede acm in številke ra�unalnika.

Primer: uporabniško ime na ra�unalniku št. 1 je: acm01

 uporabniško ime na ra�unalniku št. 12 je: acm12

Geslo je sporo�eno pred za�etkom tekmovanja.

Vaše doma�e podro�je na disku je /home/acmXX kjer je XX številka ra�unalnika

Priprava delovnega okolja

 Po uspešni prijavi morate odpreti dva terminala in program Netscape.

Terminal št.1: v njem boste pisali programe, prevajali programe in pošiljali programe sodniku.

Terminal št.2: v njem boste dobivali obvestila o pravilnosti rešitev in pošiljali morebitna vprašanja
sodniku.

Program Netscape: bo omogo�al pregled trenutne uspešnosti ekip

Pisanje programov:

Na voljo so urejevalniki besedil: vi, kwrite, mcedit, emacs, gedit in kedit

Ime programov je to�no dolo�eno pri opisu nalog. Pazite na return 0, ki mora zaklju�iti vsak
uspešno izveden C program.

Prevajanje programov:

Za prevajanje programov morate uporabljati naslednje prevajalnike:
C (*.c) gcc primer: gcc -o program program.c

C++ (*.cpp) g++ primer: g++ -o program program.cpp

Pascal (*.pas) gpc primer: gpc -o program program.pas

Java (*.java) gcj primer: gcj –o program –-main=program program.pas

Pošiljanje programov:

Za pošiljanje programov sodniku uporabljate ukaz submit.

Primer: submit program.c

Sporo�ila o napakah – PE in WA

Zaradi razli�nih razlogov je zelo težko razlikovati med Presentation Error in Wrong Answer.
Ker preverjanje poteka ve� ali manj avtomatsko, program pogosto ne zna razlikovati med tem, ali ste le
pozabili piko v odgovoru, ali pa ste napa�no zra�unali. Zato tudi Wrong Answer v�asih lahko pomeni
le manjkajo� znak v odgovoru. Praviloma naj bi sporo�ilo PE dobili le v primeru napa�no postavljenih
presledkov ali lo�il in praznih vrstic, ni pa to nujno!

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 8/18

Komunikacija sodniki – ekipa:

V terminalu 2 izvedete ukaz: ssh svarun.fmf.uni-lj.si

Za prijavo na ra�unalnik svarun uporabite isto uporabniško ime in geslo, kot ste ga uporabili za prijavo na
vaš ra�unalnik. V tem terminalskem oknu se bodo izpisovala sodnikova sporo�ila vam. �e želite poslati
sporo�ilo sodniku, morate v tem terminalu napisati ukaz:

 write sodnik

in potem sporo�ilo, ki ga zaklju�ite s kombinacijo tipk CTRL + D na za�etku prazne vrstice. Prosimo, da
ne pošiljate sporo�il tipa ... Sedaj smo poslali program ... in ... Naš program
zagotovo dela, pa dobimo WA ... Ekipa, ki bo pošiljala tovrstna sporo�ila, je lahko tudi
diskvalificirana.

Trenutni rezultati:

Program Netscape: bo omogo�al pregled trenutne uspešnosti ekip

Po zagonu programa greste na naslov:

 http://svarun.fmf.uni-lj.si/index.html

Kadar želite videti trenutno stanje, morate narediti »reload«.

Pritožbe:

So možne le takoj po zaklju�ku tekmovanja. Kasneje se rezultati lahko spremenijo le v primeru drasti�ne
sodniške napake.

Preklapljanje med angleško in slovensko tipkovnico:

Z ukazom v terminalu:

 sexkbmap si

 setxkbmap us

Nastavitve veljajo za novo odprte programe.

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 9/18

Space Station Shielding

Program

shielding.c, shielding.cpp, shielding.java, shielding.pas

Roger Wilco is in charge of the design of a low orbiting space station for the planet Mars. To simplify construction,
the station is made up of a series of Airtight Cubical Modules (ACM's), which are connected together once in space.
One problem that concerns Roger is that of (potentially) lethal bacteria that may reside in the upper atmosphere of
Mars. Since the station will occasionally through the upper atmosphere, it is imperative that extra shielding be used
on all faces of the ACMs which make up the external surface of the station. Roger has made certain that where two
ACMs touch, either edge-to-edge or face-to-face, that joint is sealed so no bacteria can sneak through. Any face of
an ACM shared by another ACM will not need shielding, of course, nor will a face which cannot be reached from
the outside. Roger could just put extra shielding on all of the faces of every ACM, but the cost would be prohibitive.
Therefore, he wants to know the exact number of ACM faces which need the extra shielding.

Input
Input consists of multiple problem instances. Each instance consists of a specification of a space station. We assume
that each space station can fit into an n x m x k grid (1 ≤ n, m, k ≤ 60), where each grid cube may or may not contain
an ACM. We number the grid cubes 0, 1, 2,..., kmn-1 as shown in the diagram below. Each space station
specification then consists of the following: the first line contains four positive integers n m k l, where n, m and k are
as described above and l is the number of ACM's in the station. This is followed by a set of lines which specify the l
grid locations of the ACM's. Each of these lines contain 10 integers (except possibly the last). Each space station is

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 10/18

fully connected (i.e., an astronaut can move from one ACM to any other ACM in the station without leaving the
station). Values of n = m = k = l = 0 terminate input.

Output
For each problem instance, you should output one line of the form

The number of faces needing shielding is s.

where s is for you to determine.

Sample Input
2 2 1 3
0 1 3
3 3 3 26
0 1 2 3 4 5 6 7 8 9
10 11 12 14 15 16 17 18 19 20
21 22 23 24 25 26
0 0 0 0

Sample Output
The number of faces needing shielding is 14.
The number of faces needing shielding is 54.

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 11/18

Traffic Lights

Program

traffic.c, traffic.cpp, traffic.java, traffic.pas

One way of achieving a smooth and economical drive to work is to 'catch' every traffic light, that is have every
signal change to green as you approach it. One day you notice as you come over the brow of a hill that every traffic
light you can see has just changed to green and that therefore your chances of catching every signal is slight. As you
wait at a red light you begin to wonder how long it will be before all the lights again show green, not necessarily all
turn green, merely all show green simultaneously, even if it is only for a second.

Write a program that will determine whether this event occurs within a reasonable time. Time is measured from the
instant when they all turned green simultaneously, although the initial portion while they are all still green is
excluded from the reckoning.

Input
Input will consist of a series of scenarios. Data for each scenario will consist of a series of integers representing the
cycle times of the traffic lights, possibly spread over many lines, with no line being longer than 100 characters. Each
number represents the cycle time of a single signal. The cycle time is the time that traffic may move in one
direction; note that the last 5 seconds of a green cycle is actually orange. Thus the number 25 means a signal that
(for a particular direction) will spend 20 seconds green, 5 seconds orange and 25 seconds red. Cycle times will not
be less than 10 seconds, nor more than 90 seconds. There will always be at least two signals in a scenario and never
more than 100. Each scenario will be terminated by a zero (0). The file will be terminated by a line consisting of
three zeroes (0 0 0).

Output
Output will consist of a series of lines, one for each scenario in the input. Each line will consist of the time in hours,
minutes and seconds that it takes for all the signals to show green again after at least one of them changes to orange.
Follow the format shown in the examples. Time is measured from the instant they all turn green simultaneously. If it
takes more than five hours before they all show green simultaneously, the message "Signals fail to
synchronise in 5 hours" should be written instead.

Sample input
19 20 0
30
25 35 0
0 0 0

Sample output
00:00:40
00:05:00

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 12/18

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 13/18

Will Indiana Jones Get There?

Program

indiana.c, indiana.cpp, indiana.java, indiana.pas

Indiana Jones is in a deserted city, annihilated during a war. Roofs of all houses have been destroyed and only
portions of walls are still standing. The ground is so full of mines that the only safe way to move around the city is
walking over the remaining walls. The mission of our hero is to save a person who is trapped in the city. In order to
move between two walls which are not connected Indiana Jones thought of taking with him a wooden board which
he could place between the two walls and then cross from one to the other.

Fig. 1: City map with route used by Indiana Jones

Initial positions of Indiana Jones and the trapped person are both on some section of the walls. Besides, walls are
either in the direction South-North or West-East. You will be given a map of the city remains. Your mission is to
determine the minimum length of the wooden board Indiana Jones needs to carry in order to get to the trapped
person.

Input
Your program should process several test cases. Each test case starts with an integer N indicating the number of wall
sections remaining in the city (2 ≤ N ≤ 1000). Each of the next N lines describes a wall section. The first wall section
to appear is the section where Indiana Jones stands at the beginning. The second section to appear is the section
where the trapped person stands. Each wall section description consists of three integers X, Y and L (–10000 ≤ X, Y,
L ≤ 10000), where X and Y define either the southernmost point of a wall section (for South-North sections) or the
westernmost point (for West-East wall sections). The value of L determines the length and direction of the wall: if L
≥ 0, the section is West-East, with length L; if L < 0, the section is North-South, with length |L| . The end of input is
indicated by N = 0.

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 14/18

Output
For each test case in the input your program should produce one line of output, containing a real value representing
the length of the wooden board Indiana Jones must carry. The length must be printed as a real number with two-digit
precision. The input will not contain test cases where differences in rounding are significant.

Sample input
14
1 1 5
6 8 2
7 2 -2
5 3 3
2 5 2
2 3 2
2 3 -2
4 3 -2
0 7 1
1 8 2
3 6 -2
4 7 2
6 6 1
6 6 -2
3
-10 0 20
-5 1 10
50 50 100
0

Sample output
1.41
1.00

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 15/18

Simply Syntax

Program

syntax.c, syntax.cpp, syntax.java, syntax.pas

In the land of Hedonia the official language is Hedonian. A Hedonian professor had noticed that many of her
students still did not master the syntax of Hedonian well. Tired of correcting the many syntactical mistakes, she
decided to challenge the students and asked them to write a program that could check the syntactical correctness of
any sentence they wrote. Similar to the nature of Hedonians, the syntax of Hedonian is also pleasantly simple. Here
are the rules:

The only characters in the language are the characters p through z and N, C, D, E, and I.
Every character from p through z is a correct sentence.
If s is a correct sentence, then so is Ns.
If s and t are correct sentences, then so are Cst, Dst, Est, and Ist.
Rules 0. to 3. are the only rules to determine the syntactical correctness of a sentence.

You are asked to write a program that checks if sentences satisfy the syntax rules given in Rule 0. - Rule 4.

Input:
The input consists of a number of sentences (1 or more) consisting only of characters p through z and N, C, D, E,
and I. Each sentence is ended by a new-line character. The collection of sentences is terminated by the end-of-file
character. If necessary, you may assume that each sentence has at most 256 characters and at least 1 character.

Output:
The output consists of the answers YES for each well-formed sentence and NO for each not-well-formed sentence.
The answers are given in the same order as the sentences. Each answer is followed by a new-line character, and the
list of answers is followed by an end-of-file character.

Sample Input:
Cp
Isz
NIsz
Cqpq

Sample Output:
NO
YES
YES
NO

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 16/18

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 17/18

Student Grants [Kci naloga]

Program

grants.c, grants.cpp, grants.java, grants.pas

The Government of Impecunia has decided to discourage tertiary students by making the payments of tertiary grants
a long and time-consuming process. Each student is issued a student ID card which has a magnetically encoded strip
on the back which records the payment of the student grant. This is initially set to zero. The grant has been set at $40
per year and is paid to the student on the working day nearest to his birthday. (Impecunian society is still somewhat
medieval and only males continue with tertiary education.) Thus on any given working day up to 25 students will
appear at the nearest office of the Department of Student Subsidies to collect their grant.

The grant is paid by an Automatic Teller Machine which is driven by a reprogrammed 8085½ chip originally
designed to run the state slot machine. The ATM was built in the State Workshops and is designed to be difficult to
rob. It consists of an interior vault where it holds a large stock of $1 coins and an output store from which these
coins are dispensed. To limit possible losses it will only move coins from the vault to the output store when that is
empty. When the machine is switched on in the morning, with an empty output store, it immediately moves 1 coin
into the output store. When that has been dispensed it will then move 2 coins, then 3, and so on until it reaches some
preset limit k. It then recycles back to 1, then 2 and so on.

The students form a queue at this machine and, in turn, each student inserts his card. The machine dispenses what it
has in its output store and updates the amount paid to that student by writing the new total on the card. If the student
has not received his full grant, he removes his card and rejoins the queue at the end. If the amount in the store plus
what the student has already received comes to more than $40, the machine only pays out enough to make the total
up to $40. Since this fact is recorded on the card, it is pointless for the student to continue queuing and he leaves.
The amount remaining in the store is then available for the next student.

Write a program that will read in values of N (the number of students, 1 ≤ N ≤ 25) and k (the limit for that machine,
1 ≤ k ≤ 40) and calculate the order in which the students leave the queue.

Input and Output
Input will consist of a series of lines each containing a value for N and k as integers. The list will be terminated by
two zeroes (0 0).

Output will consist of a line for each line of input and will contain the list of students in the order in which they
leave the queue. Students are ordered according to their position in the queue at the start of the day. All numbers
must be right justified in a field of width 3.

Sample input
5 3
0 0

Sample output
 1 3 5 2 4

���������
	����������	�����������������	�����������	�� ��!#"$����!#��%�&('*)+)-,

�������� ����������� �	��
���� ���������

 18/18

