

Pokrovitelji:

5. krog - finale 25. oktober 2002

2

5. krog - finale 25. oktober 2002

NAVODILA
Prijava: Prijavite se lahko le na en računalnik. Če bodo med tekmovanjem z njim slučajno težave, javite
vodstvu tekmovanja. V primeru, da boste hkrati prijavljeni na dveh računalnikih, bo ekipa
diskvalificirana.

Uporabniško ime je sestavljeno iz besede acm in številke računalnika.

Primer: uporabniško ime na računalniku št. 1 je: acm01

 uporabniško ime na računalniku št. 12 je: acm12

Geslo je sporočeno pred začetkom tekmovanja.

Vaše domače področje na disku je /home/acmXX kjer je XX številka računalnika

Priprava delovnega okolja

 Po uspešni prijavi morate odpreti dva terminala in program Netscape.

Terminal št.1: v njem boste pisali programe, prevajali programe in pošiljali programe sodniku.

Terminal št.2: v njem boste dobivali obvestila o pravilnosti rešitev in pošiljali morebitna vprašanja
sodniku.

Program Netscape: bo omogočal pregled trenutne uspešnosti ekip

Pisanje programov:

Na voljo so urejevalniki besedil: vi, joe, jed, mcedit, emacs, gedit in kedit

Ime programov je točno določeno pri opisu nalog. Pazite na return 0, ki mora zaključiti vsak
uspešno izveden C program.

Prevajanje programov:

Za prevajanje programov morate uporabljati naslednje prevajalnike:
C (*.c) gcc primer: gcc -o program program.c

C++ (*.cpp) g++ primer: g++ -o program program.cpp

Pascal (*.pas) gpc primer: gpc -o program program.pas

Pošiljanje programov:

Za pošiljanje programov sodniku uporabljate ukaz submit.

Primer: submit program.c

Sporočila o napakah – PE in WA

Zaradi različnih razlogov je zelo težko razlikovati med Presentation Error in Wrong Answer.
Ker preverjanje poteka več ali manj avtomatsko, program pogosto ne zna razlikovati med tem, ali ste le
pozabili piko v odgovoru, ali pa ste napačno zračunali. Zato tudi Wrong Answer včasih lahko pomeni

3

5. krog - finale 25. oktober 2002

le manjkajoč znak v odgovoru. Praviloma naj bi sporočilo PE dobili le v primeru napačno postavljenih
presledkov ali ločil in praznih vrstic, ni pa to nujno!

Komunikacija sodniki – ekipa:

V terminalu 2 izvedete ukaz: telnet svarun

Za prijavo na računalnik svarun uporabite isto uporabniško ime in geslo, kot ste ga uporabili za prijavo na
vaš računalnik. V tem terminalskem oknu se bodo izpisovala sodnikova sporočila vam. Če želite poslati
sporočilo sodniku, morate v tem terminalu napisati ukaz:
 write sodnik

in potem sporočilo, ki ga zaključite s kombinacijo tipk CTRL + D na začetku prazne vrstice. Prosimo, da
ne pošiljate sporočil tipa ... Sedaj smo poslali program ... in ... Naš program
zagotovo dela, pa dobimo WA ... Ekipa, ki bo pošiljala tovrstna sporočila, je lahko tudi
diskvalificirana.

Trenutni rezultati:

Program Netscape: bo omogočal pregled trenutne uspešnosti ekip

Po zagonu programa greste na naslov:

 http://svarun.fmf.uni-lj.si/index.html

Kadar želite videti trenutno stanje, morate narediti »reload«.

Pritožbe:

So možne le takoj po zaključku tekmovanja. Kasneje se rezultati lahko spremenijo le v primeru drastične
sodniške napake.

Preklapljanje med angleško in slovensko tipkovnico:

(Velja samo za okolje X windows)

Prednastavljena je slovenska tipkovnica. Za preklop na angleško tipkovnico v terminalu izvedete ukaz
 setxkbmap us

za preklop nazaj na slovensko pa:
 setxkbmap sl

Izbrana tipkovnica potem velja za celotno X okolje.

4

http://svarun.fmf.uni-lj.si/index.html

5. krog - finale 25. oktober 2002

Syntax

Program

SYNTAX.C, SYNTAX.CPP, SYNTAX.PAS

In the land of Hedonia the official language is Hedonian. A Hedonian professor had noticed that many of her
students still did not master the syntax of Hedonian well. Tired of correcting the many syntactical mistakes, she
decided to challenge the students and asked them to write a program that could check the syntactical correctness of
any sentence they wrote. Similar to the nature of Hedonians, the syntax of Hedonian is also pleasantly simple. Here
are the rules:

0. The only characters in the language are the characters p through z and N, C, D, E, and I.

1. Every character from p through z is a correct sentence.

2. If s is a correct sentence, then so is Ns.

3. If s and t are correct sentences, then so are Cst, Dst, Est, and Ist.

4. Rules 0. to 3. are the only rules to determine the syntactical correctness of a sentence.

You are asked to write a program that checks if sentences satisfy the syntax rules given in Rule 0. - Rule 4.

Input

The input consists of a number of sentences. Each sentence is ended by a new-line character. The collection of
sentences is terminated by the end-of-file character. If necessary, you may assume that each sentence has at most
256 characters and at least 1 character.

Output:

The output consists of the answers YES for each well-formed sentence and NO for each not-well-formed sentence.
The answers are given in the same order as the sentences. Each answer is followed by a new-line character, and the
list of answers is followed by an end-of-file character.

Sample Input
Cp
Isz
NIsz
Cqpq

Sample Output:

NO
YES
YES
NO

5

5. krog - finale 25. oktober 2002

6

5. krog - finale 25. oktober 2002

Reflections

Program

REFLECT.C, REFLECT.CPP, REFLECT.PAS

Rendering realistic images of imaginary environments or objects is an interesting topic in computer graphics. One of
the most popular methods for this purpose is ray-tracing.

To render images using ray-tracing, one computes (traces) the path that rays of light entering a scene will take. We
ask you to write a program that computes such paths in a restricted environment.

For simplicity, we will consider only two-dimensional scenes. All objects in the scene are totally reflective (mirror)
spheres. When a ray of light hits such a sphere, it is reflected such that the angle of the incoming ray and the leaving
ray against the tangent are the same:

The following figure shows a typical path that a ray of light may take in such a scene:

7

5. krog - finale 25. oktober 2002

Your task is to write a program, that given a scene description and a ray entering the scene, determines which
spheres are hit by the ray.

Input
The input consists of a series of scene descriptions. Each description starts with a line containing the number n (n <=
25) of spheres in the scene. The following n lines contain three integers xi, yi, ri each, where (xi, yi) is the center, and
ri > 0 is the radius of the i-th sphere. Following this is a line containing four integers x, y, dx, dy, which describe the
ray. The ray originates from the point (x, y) and initially points in the direction (dx, dy). At least one of dx and dy will
be non-zero.

The spheres will be disjoint and non-touching. The ray will not start within a sphere, and never touch a sphere
tangentially.

A test case starting with n = 0 terminates the input. This case should not be processed.

Output
For each scene first output the number of the scene. Then print the numbers of the spheres that the ray hits in its first
ten deflections (the numbering of spheres is according to their order in the input).

If the ray hits at most ten spheres (and then heads towards infinity), print inf after the last sphere it hits. If the ray
hits more than 10 spheres, print three points (...) after the tenth sphere.

Output a blank line after each test case.

Sample Input
3
3 3 2
7 7 1
8 1 1
3 8 1 -4
2
0 0 1
5 0 2
2 0 1 0
0

Sample Output
Scene 1
1 2 1 3 inf

Scene 2
2 1 2 1 2 1 2 1 2 1 ...

8

5. krog - finale 25. oktober 2002

Superior Search

Program

SEARCH.C, SEARCH.CPP, SEARCH.PAS

Clearly the economy is bound to pick up again soon. As a forward-thinking Internet entrepreneur, you think that the
'Net will need a new search engine to serve all the people buying new computers. Because you're frustrated with the
poor results most search engines produce, your search engine will be better.

You've come up with what you believe is an innovative approach to document matching. By giving weight to the
number of times a term appears in both the search string and in the document being checked, you believe you can
produce a more accurate search result.

Your program will be given a search string, followed by a set of documents. You will calculate the score for each
document and print it to output in the order the document appears in the input file. To calculate the score for a
document you must first calculate the term score for each term appearing in the search string. A term score is the
number of times a term occurs in the search string multiplied by the number of times it occurs in the document. The
document score is the sum of the square roots of each term score.

Input
The input file consists of a set of documents separated by single lines containing only ten dashes, "----------".
No line will be longer than 250 characters. No document will be longer than 100 lines. The first document is the
search string. The input file terminates with two lines of ten dashes in a row.

The input documents will use the full ASCII character set. You must parse each document into a set of terms.

Terms are separated by whitespace in the input document. Comparisons between terms are case-insensitive.
Punctuation is removed from terms prior to comparisons, e.g. “don't” becomes “dont”. The resulting terms
should contain only the characters {[a-z],[0- 9]}. A term in the input consisting only of punctuation should be
ignored. You may assume the search string and each document will have at least one valid term.

Output
The output is a series of scores, one per line, rounded to two decimal places. The scores are printed in the order the
documents occur in the input. No other characters may appear in the output.

Sample Input
fee fi fo fum

fee, fi, fo! fum!!

fee fee fi, me me me

Sample Output
4.00
2.41

9

5. krog - finale 25. oktober 2002

Continued Fractions

Program

FRACTION.C, FRACTION.CPP, FRACTION.PAS

Let b0, b1, b2,..., bn be integers with bk > 0 for k > 0. The continued fraction of order n with coeficients b1, b2,..., bn
and the initial term b0 is defined by the following expression

which can be abbreviated as [b0;b1,..., bn].

An example of a continued fraction of order n = 3 is [2;3, 1, 4]. This is equivalent to

Write a program that determines the expansion of a given rational number as a continued fraction. To ensure
uniqueness, make bn > 1.

Input
The input consists of an undetermined number of rational numbers. Each rational number is defined by two integers,
numerator and denominator.

Output
For each rational number given in the input, you should output the corresponding continued fraction.

Sample Input
43 19
1 2

Sample Output
[2;3,1,4]
[0;2]

10

5. krog - finale 25. oktober 2002

Crypt Kicker II

Program

CRYPT.C, CRYPT.CPP, CRYPT.PAS

A common but insecure method of encrypting text is to permute the letters of the alphabet. That is, in the text, each
letter of the alphabet is consistently replaced by some other letter. So as to ensure that the encryption is reversible,
no two letters are replaced by the same letter.

A common method of cryptanalysis is the known plaintext attack. In a known plaintext attack, the cryptanalist
manages to have a known phrase or sentence encrypted by the enemy, and by observing the encrypted text then
deduces the method of encoding.

Your task is to decrypt several encrypted lines of text, assuming that each line uses the same set of replacements,
and that one of the lines of input is the encrypted form of the plaintext
the quick brown fox jumps over the lazy dog

Input
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each
of them as described below. This line is followed by a blank line, and there is also a blank line between two
consecutive inputs.

The input consists of several lines of input. Each line is encrypted as described above. The encrypted lines contain
only lower case letters and spaces and do not exceed 80 characters in length. There are at most 100 input lines.

Output
For each test case, the output must follow the description below. The outputs of two consecutive cases will be
separated by a blank line.

Decrypt each line and print it to standard output. If there is more than one possible decryption (several lines can be
decoded to the key sentence), use the first line found for decoding. If decryption is impossible, output a single line
“No solution.”

Sample Input
1

vtz ud xnm xugm itr pyy jttk gmv xt otgm xt xnm puk ti xnm fprxq
xnm ceuob lrtzv ita hegfd tsmr xnm ypwq ktj
frtjrpgguvj otvxmdxd prm iev prmvx xnmq

Sample Output
now is the time for all good men to come to the aid of the party
the quick brown fox jumps over the lazy dog
programming contests are fun arent they

11

5. krog - finale 25. oktober 2002

John’s Tasks

Program

TASKS.C, TASKS.CPP, TASKS.PAS

John’s boss likes to give his employees a lot of tasks at once, to save himself the trouble of leaving his office too
many times. Unfortunately, the tasks he gives are not independent so the execution of one task is only possible if
some other tasks have already been executed. Of course the boss won’t bother to sort the tasks... therefore John must
do it on his own. To make things even more complicated, it’s sometimes impossible to sort the tasks (because one
task depends on another which again depends on the first).

Input
The input will consist of several instances of the problem. Each instance begins with a line containing two integers,
1 <= n <= 100 and m. n is the number of tasks (numbered from 1 to n) and m is the number of direct precedence
relations between tasks. After this, there will be m lines with two integers i and j, representing the fact that task i
must be executed before task j. An instance with n = m = 0 will finish the input.

Output
For each instance, print a line with n integers representing the tasks in a possible order of execution. If there’s more
than one solution, print lexicographicaly smallest one. If it’s impossible to find a good ordering, print “No
solution.”

Sample Input
5 4
1 2
2 3
1 3
1 5
3 3
1 2
2 3
3 1
0 0

Sample Output
1 2 3 4 5
No solution.

12

5. krog - finale 25. oktober 2002

Poker Hands

Program

POKER.C, POKER.CPP, POKER.PAS

A poker deck contains 52 cards - each card has a suit which is one of clubs, diamonds, hearts, or spades (denoted C,
D, H, and S in the input data). Each card also has a value which is one of 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king,
ace (denoted 2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K, A). For scoring purposes, the suits are unordered while the values are
ordered as given above, with 2 being the lowest and ace the highest value.

A poker hand consists of 5 cards dealt from the deck. Poker hands are ranked by the following partial order from
lowest to highest

• High Card: Hands which do not fit any higher category are ranked by the value of their highest card. If the
highest cards have the same value, the hands are ranked by the next highest, and so on.

• Pair: 2 of the 5 cards in the hand have the same value. Hands which both contain a pair are ranked by the
value of the cards forming the pair. If these values are the same, the hands are ranked by the values of the
cards not forming the pair, in decreasing order.

• Two Pairs: The hand contains 2 different pairs. Hands which both contain 2 pairs are ranked by the value
of their highest pair. Hands with the same highest pair are ranked by the value of their other pair. If these
values are the same the hands are ranked by the value of the remaining card.

• Three of a Kind: Three of the cards in the hand have the same value. Hands which both contain three of a
kind are ranked by the value of the 3 cards.

• Straight: Hand contains 5 cards with consecutive values. Hands which both contain a straight are ranked
by their highest card.

• Flush: Hand contains 5 cards of the same suit. Hands which are both flushes are ranked using the rules for
High Card.

• Full House: 3 cards of the same value, with the remaining 2 cards forming a pair. Ranked by the value of
the 3 cards.

• Four of a kind: 4 cards with the same value. Ranked by the value of the 4 cards.

• Straight flush: 5 cards of the same suit with consecutive values. Ranked by the highest card in the hand.

Your job is to compare several pairs of poker hands and to indicate which, if either, has a higher rank.

Input
The input file contains several lines, each containing the designation of 10 cards: the first 5 cards are the hand for
the player named "Black" and the next 5 cards are the hand for the player named "White".

Output
For each line of input, print a line containing one of the following three lines:

13

5. krog - finale 25. oktober 2002

 Black wins.
 White wins.
 Tie.

Sample Input
2H 3D 5S 9C KD 2C 3H 4S 8C AH
2H 4S 4C 2D 4H 2S 8S AS QS 3S
2H 3D 5S 9C KD 2C 3H 4S 8C KH
2H 3D 5S 9C KD 2D 3H 5C 9S KH

Sample Output
White wins.
Black wins.
Black wins.
Tie.

14

5. krog - finale 25. oktober 2002

Frame Stacking

Program

FRAMES.C, FRAMES.CPP, FRAMES.PAS

Consider the following 5 picture frames placed on an 9 x 8 array.

........ CCC....
EEEEEE.. BBBB.. .C.C....
E....E.. DDDDDD.. B..B.. .C.C....
E....E.. D....D.. B..B.. .CCC....
E....E.. D....D.. AAAA ..B..B..
E....E.. D....D.. A..A ..BBBB..
E....E.. DDDDDD.. A..A
E....E.. AAAA
EEEEEE..
 1 2 3 4 5

Now place them on top of one another starting with 1 at the bottom and ending up with 5 on top. If any part of a
frame covers another it hides that part of the frame below. Viewing the stack of 5 frames we see the following.

.CCC....
ECBCBB..
DCBCDB..
DCCC.B..
D.B.ABAA
D.BBBB.A
DDDDAD.A
E...AAAA
EEEEEE..

In what order are the frames stacked from bottom to top? The answer is EDABC. Your problem is to determine the
order in which the frames are stacked from bottom to top given a picture of the stacked frames. Here are the rules:

1. The width of the frame is always exactly 1 character and the sides are never shorter than 3 characters.

2. It is possible to see at least one part of each of the four sides of a frame. A corner shows two sides.

3. The frames will be lettered with capital letters, and no two frames will be assigned the same letter.

Input
Each input block contains the height, h (h<=30) on the first line and the width w (w<=30) on the second. A picture
of the stacked frames is then given as h strings with w characters each.

15

5. krog - finale 25. oktober 2002

Input may contain multiple blocks of the format described above, without any blank lines in between. All blocks in
the input must be processed sequentially.

Output
Write the solution to the standard output. Give the letters of the frames in the order they were stacked from bottom
to top. If there are multiple possibilities for an ordering, list all such possibilities in alphabetical order, each one on
a separate line. There will always be at least one legal ordering for each input block. List the output for all blocks in
the input sequentially. Leave one blank line after each blocks.

Sample input
9
8
.CCC....
ECBCBB..
DCBCDB..
DCCC.B..
D.B.ABAA
D.BBBB.A
DDDDAD.A
E...AAAA
EEEEEE..

Sample Output
EDABC

16

5. krog - finale 25. oktober 2002

Keeps Going and Going and...

Program

GOING.C, GOING.CPP, GOING.PAS

Lazy functional languages like Haskell and Miranda support features that are not found in other programming
languages, including infinite lists. Consider the following simple (and useful) recursive declaration:

 letrec
 count n = cons n (count (n+1))
 in
 count 0

The function cons constructs lists, so the above declaration creates the following structure:

 cons 0 (count 1)
 = cons 0 (cons 1 (count 2))
 = cons 0 (cons 1 (cons 2 ...))
 = [0,1,2,...]

Lazy languages can do this because they only evaluate expressions that are actually used. If a program creates an
infinite list and only looks at items 2 and 3 in it, the values in positions 0 and 1 are never evaluated and the list
structure is only evaluated so far as the fourth node.

It is also possible to use more than one function to build an infinite list. Here is a declaration that creates the list
[''even'',''odd'',''even'',...]:

 letrec
 even = cons ''even'' odd
 odd = cons ''odd'' even
 in
 even

There are also functions that manipulate infinite lists. The functions take and drop can be used to remove elements
from the start of the list, returning the (removed) front elements or the remainder of the list, respectively. Another
useful function is zip, which combines two lists like the slider on a zipper combines the teeth. For example,

 zip (count 0) (count 10) = [0,10,1,11,2,12,...]

Your task is to implement a subset of this functionality.

17

5. krog - finale 25. oktober 2002

Input
The first line of input consists of two positive integers, n and m. n is the number of declarations to follow and m is
the number of test cases.

Each declaration takes the form name = expr. There are two forms of expr: zip name1 name2 and x0 x1 ... xi name3.
In the first case, name is the result of zipping name1 and name2 together. The other case defines the first i + 1
non-negative integers in the list name (where i is at least 0) and name3 is the name of the list that continues it
(mandatory - all lists will be infinite).

The test cases take the form name s e, where s and e are non-negative integers, s <= e and e - s < 250.

No line of input will be longer than 80 characters. Names consist of a single capital letter.

Output
For each test case, print the integers in positions s to e of the list name. List elements are numbered starting with 0.

Sample Input
5 3
S = 4 3 2 1 A
O = 1 O
E = 0 E
A = zip E O
Z = zip Z S
A 43455436 43455438
S 2 5
Z 1 10

Sample Output
0 1 0
2 1 0 1
4 4 3 4 2 3 1 4 0 2

18

	NAVODILA
	Syntax
	
	
	Program

	Input
	Output:
	Sample Input
	Sample Output:

	Reflections
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	Superior Search
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	Continued Fractions
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	Crypt Kicker II
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	John’s Tasks
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	Poker Hands
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	Frame Stacking
	
	
	Program

	Input
	Output
	Sample input
	Sample Output

	Keeps Going and Going and...
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

