

Pokrovitelji:

3. krog 25. september 2002

2

3. krog 25. september 2002

NAVODILA
Prijava: Prijavite se lahko le na en računalnik. Če bodo med tekmovanjem z njim slučajno težave, javite
vodstvu tekmovanja. V primeru, da boste hkrati prijavljeni na dveh računalnikih, bo ekipa
diskvalificirana.

Uporabniško ime je sestavljeno iz besede acm in številke računalnika.

Primer: uporabniško ime na računalniku št. 1 je: acm01

 uporabniško ime na računalniku št. 12 je: acm12

Geslo je sporočeno pred začetkom tekmovanja.

Vaše domače področje na disku je /home/acmXX kjer je XX številka računalnika

Priprava delovnega okolja

 Po uspešni prijavi morate odpreti dva terminala in program Netscape.

Terminal št.1: v njem boste pisali programe, prevajali programe in pošiljali programe sodniku.

Terminal št.2: v njem boste dobivali obvestila o pravilnosti rešitev in pošiljali morebitna vprašanja
sodniku.

Program Netscape: bo omogočal pregled trenutne uspešnosti ekip

Pisanje programov:

Na voljo so urejevalniki besedil: vi, joe, jed, mcedit, emacs, gedit in kedit

Ime programov je točno določeno pri opisu nalog. Pazite na return 0, ki mora zaključiti vsak
uspešno izveden C program.

Prevajanje programov:

Za prevajanje programov morate uporabljati naslednje prevajalnike:
C (*.c) gcc primer: gcc -o program program.c

C++ (*.cpp) g++ primer: g++ -o program program.cpp

Pascal (*.pas) gpc primer: gpc -o program program.pas

Pošiljanje programov:

Za pošiljanje programov sodniku uporabljate ukaz submit.

Primer: submit program.c

Sporočila o napakah – PE in WA

Zaradi različnih razlogov je zelo težko razlikovati med Presentation Error in Wrong Answer.
Ker preverjanje poteka več ali manj avtomatsko, program pogosto ne zna razlikovati med tem, ali ste le
pozabili piko v odgovoru, ali pa ste napačno zračunali. Zato tudi Wrong Answer včasih lahko pomeni

3

3. krog 25. september 2002

le manjkajoč znak v odgovoru. Praviloma naj bi sporočilo PE dobili le v primeru napačno postavljenih
presledkov ali ločil in praznih vrstic, ni pa to nujno!

Komunikacija sodniki – ekipa:

V terminalu 2 izvedete ukaz: telnet svarun

Za prijavo na računalnik svarun uporabite isto uporabniško ime in geslo, kot ste ga uporabili za prijavo na
vaš računalnik. V tem terminalskem oknu se bodo izpisovala sodnikova sporočila vam. Če želite poslati
sporočilo sodniku, morate v tem terminalu napisati ukaz:
 write sodnik

in potem sporočilo, ki ga zaključite s kombinacijo tipk CTRL + D na začetku prazne vrstice. Prosimo, da
ne pošiljate sporočil tipa ... Sedaj smo poslali program ... in ... Naš program
zagotovo dela, pa dobimo WA ... Ekipa, ki bo pošiljala tovrstna sporočila, je lahko tudi
diskvalificirana.

Trenutni rezultati:

Program Netscape: bo omogočal pregled trenutne uspešnosti ekip

Po zagonu programa greste na naslov:

 http://svarun.fmf.uni-lj.si/index.html

Kadar želite videti trenutno stanje, morate narediti »reload«.

Pritožbe:

So možne le takoj po zaključku tekmovanja. Kasneje se rezultati lahko spremenijo le v primeru drastične
sodniške napake.

Preklapljanje med angleško in slovensko tipkovnico:

(Velja samo za okolje X windows)

Prednastavljena je slovenska tipkovnica. Za preklop na angleško tipkovnico v terminalu izvedete ukaz
 setxkbmap us

za preklop nazaj na slovensko pa:
 setxkbmap sl

Izbrana tipkovnica potem velja za celotno X okolje.

4

http://svarun.fmf.uni-lj.si/index.html

3. krog 25. september 2002

Tin Cutter

Program

TIN.C, TIN.CPP, TIN.PAS

In a Tin Cutting factory there is a machine for cutting parts from tin plates. It has an extraordinarily sharp knife able
to make horizontal or vertical segment cuts in the tin plates. Each cutting process consists of a sequence of such
cuts. Each segment cut is given by its endpoints that are always located inside the tin plate. During the cutting
process some parts of tin plate can fall out and so some holes in the plate can emerge.

Factory management needs to predict the number of holes in the plate at the end of the given sequence of cuts. Write
a program that answers this question. Single segment cuts are not considered to be holes.

Here there are examples of some situations that can arise after cutting:

Input
The input file consists of blocks of lines. Each block except the last describes one cutting process. In the first line of
the block there is a number N <= 100 indicating the number of segment cuts in the cutting process. These cuts are
defined by the following N lines. The line defining one segment cut has the form X1 Y1 X2 Y2 where X1 , Y1 and X2
, Y2 are the co-ordinates of the end points of the segment cut. They are separated by one space. The co-ordinates are
integers and always define horizontal or vertical segment (i.e. segment parallel with x or y axis). The last block
consists of just one line containing 0.

Output
The output file contains the lines corresponding to the blocks in the input file. Each such line contains the number of
holes that remain in the tin plate after the execution of the corresponding cuts. There is no line in the output file
corresponding to the last ``null'' block of the input file.

5

3. krog 25. september 2002

Sample Input:
4
0 1 1 1
1 1 1 0
1 0 0 0
0 0 0 1
2
0 1 2 1
1 2 1 0
0

Sample Output:
1
0

6

3. krog 25. september 2002

Pipe

Program

PIPE.C, PIPE.CPP, PIPE.PAS

The GX Light Pipeline Company started to prepare bent pipes for the new transgalactic light pipeline. During the
design phase of the new pipe shape the company ran into the problem of determining how far the light can reach
inside each component of the pipe. Note that the material which the pipe is made from is not transparent and not
light reflecting.

Each pipe component consists of many straight pipes connected tightly together. For the programming purposes, the
company developed the description of each component as a sequence of points [x1; y1], [x2; y2], . . ., [xn; yn], where
x1 < x2 < . . . xn . These are the upper points of the pipe contour. The bottom points of the pipe contour consist of
points with y-coordinate decreased by 1. To each upper point [xi; yi] there is a corresponding bottom point [xi; (yi)-
1] (see picture above). The company wants to find, for each pipe component, the point with maximal x-coordinate
that the light will reach. The light is emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1] (endpoints
are emitting light too). Assume that the light is not bent at the pipe bent points and the bent points do not stop the
light beam.

Input
The input file contains several blocks each describing one pipe component. Each block starts with the number of
bent points 2 <= n <= 20 on separate line. Each of the next n lines contains a pair of real values xi, yi separated by
space. The last block is denoted with n = 0.

Output
The output file contains lines corresponding to blocks in input file. To each block in the input file there is one line in
the output file. Each such line contains either a real value, written with precision of two decimal places, or the
message ‘Through all the pipe.’. The real value is the desired maximal x-coordinate of the point where the
light can reach from the source for corresponding pipe component. If this value equals to xn, then the message
‘Through all the pipe.’ will appear in the output file.

7

3. krog 25. september 2002

Sample Input
4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0

Sample Output
4.67
Through all the pipe.

8

3. krog 25. september 2002

Gizilch

Program

GIZILCH.C, GIZILCH.CPP, GIZILCH.PAS

The game of gizilch has very simple rules. First 100 grapes are labeled, in nontoxic ink, with the numbers 1 to 100.
Then, with a cry of “GIZILCH!”, the referee fires the grapes up into the air with a giant gizilcher. The two players,
who each start with a score of “1”, race to eat the falling (or, shortly thereafter, fallen) grapes and, at the same time,
multiply their scores by the numbers written on the grapes they eat. After a minute, the hungry squirrels are let
loose to finish the remaining grapes, and each contestant reports his score, the product of the numbers on the grapes
he's eaten. The unofficial winner is the player who announces the highest score.

Inevitably, though, disputes arise, and so the official winner is not determined until the disputes are resolved. The
player who claims the lower score is entitled to challenge his opponent's score. The player with the lower score is
presumed to have told the truth, because if he were to lie about his score, he would surely come up with a bigger
better lie. The challenge is upheld if the player with the higher score has a score that cannot be achieved with grapes
not eaten by the challenging player. So, if the challenge is successful, the player claiming the lower score wins.
(There’s an exception to this rule: player with lower score might do something really stupid, like claiming to have
121 points – in which case his challenge is certainly hopeless.)

So, for example, if one player claims 343 points and the other claims 49, then clearly the first player is lying; the
only way to score 343 is by eating grapes labeled 7 and 49, and the only way to score 49 is by eating a grape labeled
49. Since each of two scores requires eating the grape labeled 49, the one claiming 343 points is presumed to be
lying.

On the other hand, if one player claims 162 points and the other claims 81, it is possible for both to be telling the
truth (e.g. one eats grapes 2, 3 and 27, while the other eats grape 81), so the challenge would not be upheld.

Unfortunately, anyone who is willing to referee a game of gizilch is likely to have himself consumed so many
grapes (in a liquid form) that he or she could not reasonably be expected to perform the intricate calculations that
refereeing requires. Hence the need for you, sober programmer, to provide a software solution.

Input
Pairs of unequal, positive numbers, with each pair on a single line, that are claimed scores from a game of gizilch.

Output
Numbers, one to a line, that are the winning scores, assuming that the player with the lower score always challenges
the outcome.

Sample Input
343 49
143 121

9

3. krog 25. september 2002

610 3599
62 36

Sample Output
49
143
610
62

10

3. krog 25. september 2002

String Matching

Program

STRING.C, STRING.CPP, STRING.PAS

It's easy to tell if two words are identical - just check the letters. But how do you tell if two words are almost
identical? And how close is “almost”?

There are lots of techniques for approximate word matching. One is to determine the best substring match, which is
the number of common letters when the words are compared letter-by-letter. The key to this approach is that the
words can overlap in any way. For example, consider the words CAPILLARY and MARSUPIAL. One way to
compare them is to overlay them:

 CAPILLARY
 MARSUPIAL

There is only one common letter (A). Better is the following overlay:

 CAPILLARY
 MARSUPIAL

with two common letters (A and R), but the best is:

 CAPILLARY
 MARSUPIAL

Which has three common letters (P, I and L).

The approximation measure appx(word1, word2) for two words is given by:

 common letters * 2

 length(word1) + length(word2)

Thus, for this example, appx(CAPILLARY, MARSUPIAL) = 6 / (9 + 9) = 1/3. Obviously, for any word W
appx(W, W) = 1, which is a nice property, while words with no common letters have an appx value of 0.

11

3. krog 25. september 2002

Input
The input for your program will be a series of words, two per line, until the end-of-file flag of -1. Using the above
technique, you are to calculate appx() for the pair of words on the line and print the result. The words will all be
uppercase.

Output
Print the value for appx() for each pair as a reduced fraction. Fractions reducing to zero or one should have no
denominator.

Sample Input
CAR CART
TURKEY CHICKEN
MONEY POVERTY
ROUGH PESKY
A A
-1

Sample Output
appx(CAR,CART) = 6/7
appx(TURKEY,CHICKEN) = 4/13
appx(MONEY,POVERTY) = 1/3
appx(ROUGH,PESKY) = 0
appx(A,A) = 1

12

3. krog 25. september 2002

Flip Sort

Program

FLIP.C, FLIP.CPP, FLIP.PAS

Sorting in computer science is an important part. Almost every problem can be solved effeciently if sorted data are
found. There are some excellent sorting algorithm which has already acheived the lower bound nlgn. In this problem
we will also discuss about a new sorting approach. In this approach only one operation (Flip) is available and that
is you can exchange two adjacent terms. If you think a while, you will see that it is always possible to sort a set of
numbers in this way.

The Problem
A set of integers will be given. Now using the above approach we want to sort the numbers in ascending order. You
have to find out the minimum number of flips required. Such as to sort "1 2 3" we need no flip operation whether to
sort "2 3 1" we need at least 2 flip operations.

The Input
The input will start with a positive integer N (N<=1000). In next few lines there will be N integers. Input will be
terminated with a zero.

The Output
For each data set print "Minimum exchange operations : M" where M is the minimum flip operations required to
perform sorting. Use a seperate line for each case.

Sample Input
3
1 2 3
3
2 3 1
0

Sample Output
Minimum exchange operations : 0
Minimum exchange operations : 2

13

	NAVODILA
	Tin Cutter
	
	
	Program

	Input
	Output
	Sample Input:
	Sample Output:

	Pipe
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	Gizilch
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	String Matching
	
	
	Program

	Input
	Output
	Sample Input
	Sample Output

	Flip Sort
	
	
	Program

	The Problem
	The Input
	The Output
	Sample Input
	Sample Output

