Problem A

Tree Recovery

Little Matija liked playing with binary trees very much. His favorite game was constructing randomly looking binary trees with capital letters in the nodes. This is an example of one of his creations:

 D

 / \

 / \

 B E

 / \ \

 / \ \

A C G

 /

 /

 F

To record his trees for future generations, he wrote down two strings for each tree: an inorder traversal (left subtree, root, right subtree) and a »leaves-first« order traversal (the data in all leaves are printed in left-to-right order, then the leaves are removed and the remaining tree is traversed in the same way). A leaf in a tree is a node with no descendants. For the tree drawn above the inorder traversal is ABCDEFG and the »leaves-first« order traversal is ACFBGED.

Now, years later, looking again at the strings, he realized that reconstructing the trees was indeed possible, but only because he never had used the same letter twice in the same tree. However, doing the reconstruction by hand, soon turned out to be tedious. So now he asks you to write a program that does the job for him!

Input Specification – a.in

The input file will contain one or more test cases. Each test case consists of one line containing two strings, representing the inorder traversal and »leaves-first« order traversal of a binary tree. Both strings consist of unique capital letters (thus they are not longer than 26 characters). Input is terminated by end of file.

Output Specification – a.out

For each test case print one line containing the tree's level-order traversal (the data in all nodes at a given level are printed in left-to-right order and all nodes in level k are printed before all nodes at level k+1).

Sample Input

ABCDEFG ACFBGED

CBAD CDAB

Expected Output

DBEACGF

BCAD
Problem B

Connecting Paths

“PATH” is a game played by two players on an N by N board, where N is a positive integer. (If N = 8, the board looks like a chess board.) Two players “WHITE” and “BLACK” compete in the game to build a path of pieces played on the board from the player’s “home” edge to the player’s “target” edge, opposite the home edge. WHITE uses white pieces and BLACK uses black pieces.

For this problem you will play the “referee” for the game, analyzing boards conta​in​ing black and white pieces to determine whether either of the players has won the game or if one of the players can win by placing one of their pieces in an unfilled po​si​tion. WHITE’s turn is next.

A representation of a board on paper (and in a computer) is an N x N matrix of chara​cters 'W', 'B', and 'U'; where 'W' represents white pieces, 'B' represents black pieces, and 'U' represents unfilled positions on the board.

When we view a matrix representation of the board on paper, WHITE’s home edge is the left edge of the board (the first column), and WHITE’s target edge is the right edge (the last column). BLACK’s home edge is the top edge of the board (the first row), and BLACK’s target edge is the bottom edge (the last row).

Thus WHITE wants to build a path from left to right, and BLACK wants to build a path from top to bottom.

Two locations on the board are adjacent if one is immediately to the left, to the right above, or below the other. Thus an interior location on the board is adjacent to four ot​her locations. For N>1, corner locations each have two adjacent locations, and for N>2, other border locations have three adjacent locations.

A path is a sequence of distinct positions on the board, L0, L1,…, Lk, such that each pair Li and Li+1 are adjacent for i=0,…,k-1. A winning path for a player is a path L0, L1,…, Lk filled with the player’s pieces such that L0 is a position on the player’s home edge and Lk is a position on the player’s target edge. It is clear that if one player has a winning path then the other player is blocked from having a winning path. Thus if all the squares contain pieces, either there are no winning paths or exactly one of the players has at least one winning path.

Input Specification – b.in

Input is a series of game board data sets. Each set begins with a line containing an integer specifying the size N, 0<N<81of the (N x N) game board. This is followed by a blank line and then by N lines, one for each row of the game board, from the top row to the bottom row. Each line begins with character and consists of N adjacent characters from the set {'B', 'W', 'U'}. A blank line separates each non-zero data set from the following data set. The input is terminated by a single line containing a board size of zero.

Output Specification – b.out

As referee, for each game board in a series of game boards your program should report one of the five types of answers below:

White has a winning path.

Black has a winning path.

White can win in one move. (White can place a piece in an unfilled position.)

Black can win in one move. (White can’t win in one move AND Black can.)

There is no winning path.

Sample Input

7

WBBUUUU

WWBUWWW

UWBBBWB

BWBBWWB

BWWBWBB

UBWWWBU

UWBBBWW

3

WBB

WWU

WBB

0

Expected Output

White has a winning path.

White can win in one move.

Problem C

Nenavadna funkcija

Nekatere funkcije najlažje opišemo rekurzivno. Taka je tudi naša enoparametrična družina. Funkcije iz te družine slikajo iz pozitivnih celih števil v pozitivna cela števila. Baza rekurzije je predpis F(1)=a. Pri rekurzivnem pravilu ločimo dve možnosti. Če je argument sod, potem velja F(2n)=F(n). Če pa je argument lih, potem imamo F(2n+1)=F(n)+F(n+1).

Vaša naloga je napisati program, ki bo dovolj hitro računal vrednosti funkcije F.

Vhod – c.in

Vsaka vrstica vhodne datoteke vsebuje dve števili: n in a. Število n je med 1 in 2000000000, število a pa med 1 in 10000. Izračunati je treba vrednost F(n) pri pogoju F(1)=a. Zadnja vrstica datoteke vsebuje samo število 0. Testna datoteka ne bo vsebovala več kot 1000 vrstic.

Izhod – c.out

Vsaka vrstica izhodne datoteke naj vsebuje ustrezno vrednost F(n), če je ta manjša ali enaka 1000000000, ali pa besedico overflow, kadar je rezultat večji od milijarde. Izpis naj ne vsebuje odvečnih presledkov.

Primer vhodnih podatkov

13 2

1431655765 1

22369621 9999

0

Pričakovan izpis

10

2178309

overflow

Problem D

Lining Up

``How am I ever going to solve this problem?'' said the pilot.

Indeed, the pilot was not facing an easy task. She had to drop packages at specific points scattered in a dangerous area. Furthermore, the pilot could only fly over the area once in a straight line, and she had to fly over as many points as possible. All points were given by means of integer coordinates in a two-dimensional space. The pilot wanted to know the largest number of points from the given set that all lie on one line. Can you write a program that calculates this number?

Your program has to be efficient!

Input Specification – d.in

The input file will contain one or more test cases. Each test case consists of a number N, where 1 < N < 3000, followed by N pairs of (16-bit) integers. Each pair of integers is separated by one blank and ended by a new-line character. No pair will occur twice. in the same test case. Input is terminated by N=0.

Output Specification – d.out

The output consists of one integer per test case representing the largest number of points that all lie on one line.

Sample Input

5

1 1

2 2

3 3

9 10

10 11

0

Expected Output

3

 Problem E

Domino Effect

Did you know that you can use domino bones for other things besides playing Dominoes? Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you do it right, you can tip the first domino and cause all others to fall down in succession (this is where the phrase “domino effect”' comes from).

While this is somewhat pointless with only a few dominoes, some people went to the opposite extreme in the early Eighties. Using millions of dominoes of different colors and materials to fill whole halls with elaborate patterns of falling dominoes, they created (short­lived) pieces of art. In these constructions, usually not only one but several rows of dominoes were falling at the same time. As you can imagine, timing is an essential factor here.

It is now your task to write a program that, given such a system of rows formed by dominoes, computes when and where the last domino falls. The system consists of several “key” dominoes connected by rows of simple dominoes. When a key domino falls, all rows connected to the domino will also start falling (except for the ones that have already fallen). When the falling rows reach other key dominoes that have not fallen yet, these other key dominoes will fall as well and set off the rows connected to them. Domino rows may start collapsing at either end. It is even possible that a row is collapsing on both ends, in which case the last domino falling in that row is somewhere between its key dominoes. You can assume that rows fall at a uniform rate.

Input Specification – e.in

The input file contains descriptions of several domino systems. The first line of each description contains two integers: the number n of key dominoes (1 (n (500) and the number m of rows between them. The key dominoes are numbered from 1 to n. There is at most one row between any pair of key dominoes and the domino graph is connected, i.e. there is at least one way to get from a domino to any other domino by following a series of domino rows.

The following m lines each contain three integers a, b, and l, stating that there is a row between key dominoes a and b that takes l seconds to fall down from end to end. Each system is started by tipping over key domino number 1. The file ends with an empty system (with n = m = 0), which should not be processed.

Output Specification – e.out

For each case output a line stating the number of the case ('System #1', 'System #2', etc.). Then output a line containing the time when the last domino falls, exact to one digit to the right of the decimal point, and the location of the last domino falling, which is either at a key domino or between two key dominoes. Adhere to the format shown in the output sample. If you find several solutions, output only one of them. Output a blank line after each system.

Sample Input

2 1

1 2 27

3 3

1 2 5

1 3 5

2 3 5

0 0

Expected Output

System #1

The last domino falls after 27.0 seconds, at key domino 2.

System #2

The last domino falls after 7.5 seconds, between key dominoes 2 and 3.

